IV B.Tech II Semester(R07) Regular Examinations, April 2011 DESIGN \& DRAWING OF HYDRAULIC STRUCTURES

(Civil Engineering)

Time: 3 hours
Max Marks: 80

Answer any ONE questions
 All questions carry equal marks

1. Design a sloping glacis weir for the following data obtained at the site and draw plan at top and longitudinal section
Maximum discharge intensity on weir crest is 12.5 cumecs $/ \mathrm{m}$.
HFL before construction of weir $=225.00 \mathrm{~m}$
River bed level $=218.75 \mathrm{~m}$
Pond level $=224.00 \mathrm{~m}$
Height of crest shutters $=1.5 \mathrm{~m}$
Anticipated downstream water level in the river when the weir is discharging with pond level upstream $=221.50 \mathrm{~m}$
Bed retrogression $=0.5 \mathrm{~m}$
Lacey's silt factor $=0.9$
Permissible exit gradient $=1 / 7$
Permissible afflux $=1 \mathrm{~m}$.
2. Design and draw half plan at top and longitudinal section of a canal regulator with the following data.

	U/S canal	D/S canal
Full supply discharge	$20 \mathrm{~m}^{3} / \mathrm{sec}$	$16 \mathrm{~m}^{3} / \mathrm{sec}$
Bed width	15 m	15 m
Full supply depth	2 m	1.75 m
Bed level	+20.00 m	+20.00 m
Full supply level	+22.00 m	+21.75 m
Top level of bank	+23.00 m	+22.75 m

Top widths of banks on the upstream and downstream side are same. The regulator carries a road way single lane designed for 1 RC loading class A. Provide clear free board of one metre above FSL for the road bridge. Right bank is 5 metres wide and left bank is 2 metres wide. Good foundation soil is available at +19.00 m . Assume the ground level at site as +22.00 m

IV B.Tech II Semester(R07) Regular Examinations, April 2011 DESIGN \& DRAWING OF HYDRAULIC STRUCTURES
 (Civil Engineering)

Time: 3 hours

Answer any ONE questions
 All questions carry equal marks

1. Design and draw half plan at foundation and longitudinal section of the sluice through the barrel of a tank sluice with tower head with the following data.
Ayacut $=200$ hectares .
Duty $=1000$ hectares/cumec
Tank bund top width $=2 \mathrm{~m}$
Tank bund side slopes $2: 1$
Top level of bank $=+40.00 \mathrm{~m}$
Ground level at the site $=+34.50 \mathrm{~m}$
Good hard soil for foundation is available at +33.50 m .
Sill of the sluice at off take $=+34.00 \mathrm{~m}$
Maximum water level in the tank $=+38.00 \mathrm{~m}$
Full tank level $=+37.00 \mathrm{~m}$
Average low water level of the tank $=+35.00 \mathrm{~m}$
The details of the channel below the sluice are:
Bed level $=+34.00 \mathrm{~m}$
Full supply level $=+34.50 \mathrm{~m}$
Bed width $=1.25 \mathrm{~m}$
Side slopes $=1.5: 1$
Top of bank $=+35.50 \mathrm{~m}$
2. Design and draw half plan at foundation level and longitudinal section across Syphon barrel of a Syphon Aqueduct type III with the following data.
Canal Details:
Discharge $=35 \mathrm{~m}^{3} / \mathrm{sec}$
Bed width $=20.22 \mathrm{~m}$
Bed level $=+40.00 \mathrm{~m}$
Full supply level $=+42.00 \mathrm{~m}$
Ultimate full supply level $=+42.50 \mathrm{~m}$
Average velocity in the canal $=0.83 \mathrm{~m} / \mathrm{sec}$
Left bank top width $=5.00 \mathrm{~m}$
Right bank top width $=2.00 \mathrm{~m}$
Canal side slopes both inside and outside are $2: 1$ in embankment with minimum cover of 1.00 m one the hydraulic gradient.
Top of canal bank $=+43.50 \mathrm{~m}$

Drain Details:
Catchment area $=8.0$ square km .
Maximum flood discharge $=60 \mathrm{~m}^{3} / \mathrm{sec}$.
Maximum flood level of the drain at the site of crossing $=+39.75 \mathrm{~m}$
Hard soil is available at +37.00 m .
Average ground level on flanks of drain $=+38.00 \mathrm{~m}$
Bed level of drain $=+38.00 \mathrm{~m}$ at the point of crossing.

IV B.Tech II Semester(R07) Regular Examinations, April 2011 DESIGN \& DRAWING OF HYDRAULIC STRUCTURES

(Civil Engineering)

Time: 3 hours
Max Marks: 80

Answer any ONE questions
 All questions carry equal marks

* $\star \star \star \star$

1. Design and draw plan and longitudinal section of a type-III syphon aqueduct for the following data.
Discharge of the canal $=30 \mathrm{~m}^{3} / \mathrm{sec}$
Bed width of canal $=20 \mathrm{~m}$
Depth of water in the canal $=1.5 \mathrm{~m}$
Bed level of the canal $=165.0 \mathrm{~m}$
High flood discharge of the drainage $=450 \mathrm{~m}^{3} / \mathrm{sec}$
High flood level of the drainage $=166.00 \mathrm{~m}$
Bed level of the drainage $=163.00 \mathrm{~m}$
General ground level $=165.00 \mathrm{~m}$
Assume any other suitable data not given.
2. Design and draw half plan at bottom and longitudinal section of a canal drop notch type with the following data. Canal details:

	U / S	D / S
Full supply discharge	$4.2 \mathrm{~m}^{3} / \mathrm{sec}$	$4.2 \mathrm{~m}^{3} / \mathrm{sec}$
Bed width	6.0 m	6.0 m
Bed level	+10.0 m	+8.0 m
Full supply depth	1.5 m	1.5 m
Full supply level	+11.5 m	+9.5 m
Top of bank 2m wride at level	+12.5 m	+10.5 m
Half supply depth	1.0 m	1.0 m

Good soil is available for foundation at +8.5 m
The ground level at the site of work is +10.50 m

IV B.Tech II Semester(R07) Regular Examinations, April 2011 DESIGN \& DRAWING OF HYDRAULIC STRUCTURES

(Civil Engineering)

Time: 3 hours
Max Marks: 80

Answer any ONE questions
 All questions carry equal marks

1. Design and draw half plan at bottom and longitudinal section of a canal drop notch type with the following data.

	U/S of drop	D/S of drop
Discharge	4 cumecs	4 cumecs
Bed width	6.0 m	6.0 m
Bed level	+10.00 m	+8.00 m
Full supply depth	1.5 m	1.5 m
Full supply level	+11.5 m	+9.5 m
Full board	1.0 m	1.0 m

The ground level at the site of work is +10.50 m
Good soil for foundation is available at +8.50 m
Half supply depth may be taken as 1.0 m .
2. Design and draw half plan at bottom and longitudinal section of a tank surplus weir with the following data.
Combined catchment $=26 \mathrm{~km}^{2}$
Intercepted catchment $=20 \mathrm{~km}^{2}$
Full tank level $=+6.70 \mathrm{~m}$
Maximum water level $=+7.50 \mathrm{~m}$
Ground level $=+5.80 \mathrm{~m}$
Foundation level $=+4.2 \mathrm{~m}$
Tank bund level $=+8.9 \mathrm{~m}$
Top width of bund $=1.8 \mathrm{~m}$
Slope an either side of bund=2:1
D / S level is +4.8 m in a distance of 8 m .

